Logarithm and Exponential Functions

Logarithms are defined with respect to a particular base, but have a set of properties regardless of the base. The base may be any positive number, but there are three very commonly used bases; 10, 2 and e (footnote ${ }^{1}$).

Definition

Let b be the base. If for a given number $z, b^{x}=z_{,}$then x is said to be the logarithm (base b) of z :
$x=\log _{b} z ; x$ is a logarithmic function of z,
$z=b^{x} ; z$ is an exponential function of x.
The exponential and logarithmic functions are mutually inverse.
Logarithms in base 10
If $10^{x}=a_{s}$ then x is said to be the logarithm (base 10) of a.

$10^{-2}=0.01$	$\log _{10} 0.01=-2$
$10^{-1}=0.1$	$\log _{10} 0.1=-1$
$10^{0}=1$	$\log _{10} 1=0$
$10^{1}=10$	$\log _{10} 10=1$
$10^{2}=100$	$\log _{10} 100=2$
$10^{3}=1000$	$\log _{10} 1000=3$

Logarithms in base 2

If $2^{x}=a_{s}$ then x is said to be the logarithm (base 2) of a.

$2^{-2}=0.25$	$\log _{2} 0.25=-2$
$2^{-1}=0.5$	$\log _{2} 0.5=-1$
$2^{0}=1$	$\log _{2} 1=0$
$2^{1}=2$	$\log _{2} 2=1$
$2^{2}=4$	$\log _{2} 4=2$
$2^{3}=8$	$\log _{2} 8=3$

[^0]
Logarithms in base e

If $e^{x}=a_{s}$ then x is said to be the logarithm (base e) of a, x can also be said to be be the natural or Napierian logarithm, and is sometimes denoted by ln.

$e^{-2}=0.1353352832$	$\log _{e} 0.1353352832=-2$
$e^{-1}=0.367879441171442$	$\log _{e} 0.367879441171442=-1$
$e^{0}=1$	$\log _{e} 1=0$
$e^{1}=2.7182818284$	$\log _{e} 2.7182818284=1$
$e^{2}=7.38905609893065$	$\log _{e} 7.38905609893065=2$
$e^{3}=20.0855369231877$	$\log _{e} 20.0855369231877=3$

Graphs of $\log (\mathrm{x})$

If we plot $\log (x)$ for a range of values of x and in the three most important bases then the following graphs are obtained.

Although the graphs are different for different bases, they have a number of characteristics in common:
(i) they all pass through the point $(1,0) ; \log (1)=0$ in all bases
(ii) the graph reaches the limit of $-\infty$ as x tends to zero
(iii) the graphs "flatten out" as x tends to ∞.

Changing base of Logarithms

Log graphs essentially have the same shape; multiplying the log graph in one base by a number gives the log graph in another base:
$\log _{b} x=\frac{\log _{c} x}{\log _{c} b}$.
For example with $x=4, b=2$ and $c=10: \quad \log _{2} 4=\frac{\log _{10} 4}{\log _{10} 2}=\frac{0.6020599913}{0.3010299957}=2$

Properties are true for logarithms in any base.
These properties made logarithms useful in the days before widespread use of computers.
(i)
$\log (x y)=\log (x)+\log (y)$
For example
$\log _{2}(8)=\log _{2}(4 \times 2)=\log _{2}(4)+\log _{2}(2)=2+1=3$.
In the days before there was a widespread availability of computers, for a difficult multiplication (say x and y) first the logs of the two numbers would be looked up (giving $\log (x)$ and $\log (y)$). He numbers would be added (to give $\log (x)+\log (y)$, which is equal to $\log (x y)$. By taking the antilogarithm (of $\log (x y))$ from the same book of tables, the value of $x y$ is obtained.
(ii)
$\log (x / y)=\log (x)-\log (y)$

For example
$\log _{2}(2)=\log _{2}(4 / 2)=\log _{2}(4)-\log _{2}(2)=2-1=1$.
(iii)
$\log (x / y)=\log (x)-\log (y)$
For example
$\log _{2}(2)=\log _{2}(4 / 2)=\log _{2}(4)-\log _{2}(2)=2-1=1$.
(iv)
$\log (1 / y)=-\log (y)$
For example
$\log _{10}\left(\frac{1}{100}\right)=-2=-\log _{10}(100)$.
(v)
$\log \left(x^{p}\right)=p \log (x)$
For example
$\log _{10}(1000)=\log _{10}\left(10^{3}\right)=3 \log _{10}(10)=3 \times 1=3$.

Graphs of b^{x}

If we plot b^{x} for a range of values of x and in the three most important bases then the following graphs are obtained.

The green graph is 10^{x}, the red graph is e^{x} and the blue graph is 2^{x}. Since 10^{x} grows much faster than the other graphs, then the two other graphs are shown below.

[^0]: ${ }^{1} e$ is the mathematical constant equal to 2.71828182845904523536 to 20 decimal places.

