Logarithm and Exponential Functions

Logarithms are defined with respect to a particular *base*, but have a set of properties regardless of the base. The base may be any positive number, but there are three very commonly used bases; 10, 2 and e (footnote¹).

Definition

Let *b* be the base. If for a given number z, $b^x = z$, then x is said to be the logarithm (base b) of z:

 $x = \log_b z$; x is a logarithmic function of z,

 $z = b^x$; z is an exponential function of x.

The exponential and logarithmic functions are mutually inverse.

Logarithms in base 10

If $10^x = a$, then x is said to be the logarithm (base 10) of a.

10-2=0.01	$\log_{10} 0.01 = -2$
10-1=0.1	$\log_{10} 0.1 = -1$
100=1	$\log_{10} 1 = 0$
101=10	$\log_{10} 10 = 1$
102=100	$\log_{10} 100 = 2$
103=1000	$\log_{10} 1000 = 3$

Logarithms in base 2

If $2^x = a$, then x is said to be the logarithm (base 2) of a.

2-2=0.25	$\log_2 0.25 = -2$
2-1=0.5	$\log_2 0.5 = -1$
20=1	$\log_2 1 = 0$
21=2	$\log_2 2 = 1$
22=4	$\log_2 4 = 2$
23=8	$log_2 8 = 3$

 $^{^{1}}$ e is the mathematical constant equal to 2.71828 18284 59045 23536 to 20 decimal places.

Logarithms in base e

If $e^x = a$, then x is said to be the logarithm (base e) of a, x can also be said to be be the natural or Napierian logarithm, and is sometimes denoted by $\ln a$.

e-2=0.1353352832	loge 0.1353352832= -2
<i>e</i> -1=0.367879441171442	loge 0.367879441171442= -1
$e^0 = 1$	$log_e 1 = 0$
e^1 =2.71828 18284	loge 2.71828 18284= 1
e ² =7.38905609893065	loge 7.38905609893065=2
e^3 =20.0855369231877	$\log_e 20.0855369231877 = 3$

Graphs of log(x)

If we plot log(x) for a range of values of x and in the three most important bases then the following graphs are obtained.

Although the graphs are different for different bases, they have a number of characteristics in common:

- (i) they all pass through the point (1,0); $\log (1)=0$ in all bases
- (ii) the graph reaches the limit of $-\infty$ as x tends to zero
- (iii) the graphs "flatten out" as x tends to ∞ .

Changing base of Logarithms

Log graphs essentially have the same shape; multiplying the log graph in one base by a number gives the log graph in another base:

$$\log_b x = \frac{\log_c x}{\log_c b} \,.$$

For example with
$$x = 4$$
, $b = 2$ and $c = 10$: $\log_2 4 = \frac{\log_{10} 4}{\log_{10} 2} = \frac{0.6020599913}{0.3010299957} = 2$

Properties are true for logarithms in any base.

These properties made logarithms useful in the days before widespread use of computers.

(i)
$$\log(xy) = \log(x) + \log(y)$$

$$\log_2(8) = \log_2(4 \times 2) = \log_2(4) + \log_2(2) = 2 + 1 = 3.$$

In the days before there was a widespread availability of computers, for a difficult multiplication (say x and y) first the logs of the two numbers would be looked up (giving $\log(x)$ and $\log(y)$). He numbers would be added (to give $\log(x) + \log(y)$, which is equal to $\log(xy)$. By taking the *antilogarithm* (of $\log(xy)$) from the same book of tables, the value of xy is obtained.

(ii)
$$\log(x/y) = \log(x) - \log(y)$$

For example

$$\log_2(2) = \log_2(4/2) = \log_2(4) - \log_2(2) = 2 - 1 = 1.$$

(iii)
$$\log(x/y) = \log(x) - \log(y)$$

For example

$$\log_2(2) = \log_2(4/2) = \log_2(4) - \log_2(2) = 2 - 1 = 1.$$

(iv)
$$\log(1/y) = -\log(y)$$

For example

$$\log_{10}\left(\frac{1}{100}\right) = -2 = -\log_{10}(100).$$

$$(v) \log(x^p) = p \log(x)$$

For example
$$\log_{10}(1000) = \log_{10}(10^3) = 3 \log_{10}(10) = 3 \times 1 = 3$$
.

Graphs of bx

If we plot b^x for a range of values of x and in the three most important bases then the following graphs are obtained.

The green graph is 10^x , the red graph is e^x and the blue graph is 2^x . Since 10^x grows much faster than the other graphs, then the two other graphs are shown below.

