Logarithm and Exponential Functions

Logarithms are defined with respect to a particular base, but have a set of properties regardless of the base. The base may be any positive number, but there are three very commonly used bases; 10, 2 and e (footnote\(^1\)).

Definition

Let \(b \) be the base. If for a given number \(z \), \(b^x = z \), then \(x \) is said to be the logarithm (base \(b \)) of \(z \):

\[
x = \log_b z; \text{ } x \text{ is a logarithmic function of } z,
\]

\[
z = b^x; \text{ } z \text{ is an exponential function of } x.
\]

The exponential and logarithmic functions are mutually inverse.

Logarithms in base 10

If \(10^x = a \), then \(x \) is said to be the logarithm (base 10) of \(a \).

<table>
<thead>
<tr>
<th>(\text{Base})</th>
<th>(\text{Exponential})</th>
<th>(\text{Logarithmic})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{0.01})</td>
<td>(0.01)</td>
<td>(\log_{10} 0.01 = -2)</td>
</tr>
<tr>
<td>(10^{0.1})</td>
<td>(0.1)</td>
<td>(\log_{10} 0.1 = -1)</td>
</tr>
<tr>
<td>(10^0)</td>
<td>(1)</td>
<td>(\log_{10} 1 = 0)</td>
</tr>
<tr>
<td>(10^1)</td>
<td>(10)</td>
<td>(\log_{10} 10 = 1)</td>
</tr>
<tr>
<td>(10^{2})</td>
<td>(100)</td>
<td>(\log_{10} 100 = 2)</td>
</tr>
<tr>
<td>(10^{3})</td>
<td>(1000)</td>
<td>(\log_{10} 1000 = 3)</td>
</tr>
</tbody>
</table>

Logarithms in base 2

If \(2^x = a \), then \(x \) is said to be the logarithm (base 2) of \(a \).

<table>
<thead>
<tr>
<th>(\text{Base})</th>
<th>(\text{Exponential})</th>
<th>(\text{Logarithmic})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^{0.25})</td>
<td>(0.25)</td>
<td>(\log_{2} 0.25 = -2)</td>
</tr>
<tr>
<td>(2^{0.5})</td>
<td>(0.5)</td>
<td>(\log_{2} 0.5 = -1)</td>
</tr>
<tr>
<td>(2^0)</td>
<td>(1)</td>
<td>(\log_{2} 1 = 0)</td>
</tr>
<tr>
<td>(2^1)</td>
<td>(2)</td>
<td>(\log_{2} 2 = 1)</td>
</tr>
<tr>
<td>(2^2)</td>
<td>(4)</td>
<td>(\log_{2} 4 = 2)</td>
</tr>
<tr>
<td>(2^3)</td>
<td>(8)</td>
<td>(\log_{2} 8 = 3)</td>
</tr>
</tbody>
</table>

\(^1e\) is the mathematical constant equal to 2.71828 18284 59045 23536 to 20 decimal places.
Logarithms in base e

If $e^x = a$, then x is said to be the logarithm (base e) of a. x can also be said to be the natural or Napierian logarithm, and is sometimes denoted by ln.

<table>
<thead>
<tr>
<th>e^2=0.1353352832</th>
<th>$\log_e 0.1353352832$ = -2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^1=0.367879441171442</td>
<td>$\log_e 0.367879441171442$ = -1</td>
</tr>
<tr>
<td>e^0=1</td>
<td>$\log_e 1$ = 0</td>
</tr>
<tr>
<td>e^4=2.7182818284</td>
<td>$\log_e 2.7182818284$ = 1</td>
</tr>
<tr>
<td>e^2=7.38905609893065</td>
<td>$\log_e 7.38905609893065$ = 2</td>
</tr>
<tr>
<td>e^3=20.0855369231877</td>
<td>$\log_e 20.0855369231877$ = 3</td>
</tr>
</tbody>
</table>

Graphs of log(x)

If we plot log(x) for a range of values of x and in the three most important bases then the following graphs are obtained.

Although the graphs are different for different bases, they have a number of characteristics in common:

(i) they all pass through the point $(1,0)$; log (1)=0 in all bases
(ii) the graph reaches the limit of $-\infty$ as x tends to zero
(iii) the graphs “flatten out” as x tends to ∞.

![Graphs of log x](image)
Changing base of Logarithms

Log graphs essentially have the same shape; multiplying the log graph in one base by a number gives the log graph in another base:

\[\log_c x = \frac{\log_b x}{\log_b c}. \]

For example with \(x = 4, b = 2 \) and \(c = 10 \):

\[\log_2 4 = \frac{\log_{10} 4}{\log_{10} 2} = \frac{0.6020599913}{0.3010299557} = 2 \]

Properties are true for logarithms in any base.

These properties made logarithms useful in the days before widespread use of computers.

(i)
\[\log(xy) = \log(x) + \log(y) \]

For example
\[\log_2(8) = \log_2(4 \times 2) = \log_2(4) + \log_2(2) = 2 + 1 = 3. \]

In the days before there was a widespread availability of computers, for a difficult multiplication (say \(x \) and \(y \)) first the logs of the two numbers would be looked up (giving \(\log(x) \) and \(\log(y) \)). He numbers would be added (to give \(\log(x) + \log(y) \) which is equal to \(\log(xy) \). By taking the antilogarithm (of \(\log(xy) \)) from the same book of tables, the value of \(xy \) is obtained.

(ii)
\[\log(x/y) = \log(x) - \log(y) \]

For example
\[\log_2(2) = \log_2(4/2) = \log_2(4) - \log_2(2) = 2 - 1 = 1. \]

(iii)
\[\log(x/y) = \log(x) - \log(y) \]

For example
\[\log_2(2) = \log_2(4/2) = \log_2(4) - \log_2(2) = 2 - 1 = 1. \]

(iv)
\[\log(1/y) = -\log(y) \]

For example
\[\log_{10}\left(\frac{1}{100}\right) = -2 = -\log_{10}(100). \]
(v) \[\log(x^p) = p \log(x) \]

For example
\[\log_{10}(1000) = \log_{10}(10^3) = 3 \log_{10}(10) = 3 \times 1 = 3. \]

Graphs of b^x

If we plot b^x for a range of values of x and in the three most important bases then the following graphs are obtained.

The green graph is 10^x, the red graph is e^x and the blue graph is 2^x. Since 10^x grows much faster than the other graphs, then the two other graphs are shown below.